Mark scheme - Acids

Question	Answer/Indicative content	Marks	

2.1.4 Acids

2.1.4 Acids

2.1.4 Acids

2.1.4 Acids

				instead of only the concordant results; this led the candidates to give an answer of 26.58 which lost them 2 marks.
	ii	$\frac{2 \times 0.05}{26.85} \times 100=0.37(2)(\%) \checkmark$	1	ALLOW 0.4 up to full calculation display of 0.372439478 ALLOW ECF FOR CORRECT CALCULATION FROM 1 (c) (i) OR USE OF ANY TITRE Examiner's Comments A good attempt by many candidates but some did not know how to calculate this or did not multiply by 2 .
	iii	Use a ($250 \mathrm{~cm}^{3}$) volumetric flask (instead of a beaker) $\sqrt{ }$	1	IGNORE graduated flask Examiner's Comments Although there were some excellent descriptions of the correct processes, such as inverting the apparatus to ensure mixing and then making the solution up to the mark, many candidates could not name a volumetric flask.
c	i	FIRST CHECK ANSWER ON ANSWER LINE If answer $=118\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ award 4 marks If answer $=108\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ award 3 marks $n(\mathrm{NaOH})$ $=0.112 \times \frac{25.0}{1000}=0.00280(\mathrm{~mol})$ $n(\mathbf{A})$ in $25.0 \mathrm{~cm}^{3}$ $=\frac{0.00280}{2}=0.00140(\mathrm{~mol}) \downarrow$ $\mathbf{n}(\mathbf{A})$ in $250 \mathrm{~cm}^{3}$ $=0.00140 \times \frac{250.0}{27.30}=0.0128(\mathrm{~mol}) \downarrow$ Molar mass, $M(\mathbf{A})$ to nearest whole number. $=\frac{1.513}{0.0128}=118\left(\mathrm{~g} \mathrm{~mol}^{-1}\right) \vee$	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC Throughout: IGNORE trailing zeroes in intermediate working, e.g. For $n(\mathrm{NaOH})$ ALLOW 0.0028 for 0.00280 ALLOW ECF from incorrect $n(\mathrm{NaOH})$ ALLOW ECF from incorrect $n(\mathrm{~A})$ OR n (NaOH) ALLOW 3 sig fig up to full calculator display correctly rounded (0.012820512) ALLOW ECF from incorrect $n(\mathrm{NaOH})$ $\begin{array}{\|l} \text { Possible ECFs for } 3 \text { marks } \\ 1.513 \div(0.00140 \times 250 / 25)=108 \\ 1.513 \div 0.00140=1081 \end{array}$ No $\div 2$ for $n(A)$ - Molar mass $\mathbf{A}=59\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ Using mean titre of $26.45 \mathrm{~cm}^{3}$ from $\mathbf{1 c} \mathbf{c}(\mathbf{i})$ - Molar mass A = $114\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ Using 27.3×0.112 in M1 and then 25.0 in M3 - Molar mass $\mathbf{A}=99\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$

2.1.4 Acids

$\left.\begin{array}{|l|l|l|l|l|}\hline & & & & \\ \hline\end{array} \left\lvert\, \begin{array}{l}\text { Examiner's Comments } \\ \text { Although there were some excellent } \\ \text { descriptions of the correct processes, such as } \\ \text { inverting the apparatus to ensure mixing and } \\ \text { then making the solution up to the mark, many } \\ \text { candidates could not name a volumetric flask. }\end{array}\right.\right]$

			cm^{3}) AND calculating the mean titre		
	c	i	$\begin{aligned} & n(\mathrm{HCl})=(0.100)(\text { answer to }(\mathbf{c})(\mathbf{i}) / 1000)=0.00222 \\ & (\mathrm{~mol})(1) \\ & n\left(\mathrm{M}_{2} \mathrm{CO}_{3}\right)=0.00222 / 2=0.00111(\mathrm{~mol})(1) \end{aligned}$	2	allow ecf from (b)(i)
		ii	$\begin{aligned} & n\left(\mathrm{M}_{2} \mathrm{CO}_{3}\right) \text { in total }=0.00111 \times 10=0.0111 \mathrm{~mol}(1) \\ & \text { Molar mass }=1.58 / 0.0111=142.3 \mathrm{~g} \mathrm{~mol}^{-1}(1) \\ & \text { Mass of } \mathrm{M}=(142.3-60) / 2=41.15(=\mathrm{K})(1) \\ & \mathrm{K}_{2} \mathrm{CO}_{3}(1) \end{aligned}$	4	Note: molar mass is between $\mathrm{K}_{2} \mathrm{CO}_{3}$ (138.2) and SrCO_{3} (147.6); only possible match for a Group 1 carbonate is $\mathrm{K}_{2} \mathrm{CO}_{3}$.
			Total	10	
5			(Acid) releases H^{+}ions $/ \mathrm{H}^{+}$donor AND (weak acid) partially dissociates/ionises \checkmark	1	ALLOW $\mathrm{H}^{+} \mathbf{O R}$ proton IGNORE vague responses that do not imply a number, e.g. - poor proton donor IGNORE 'doesn't easily dissociate’ IGNORE 'a strong acid completely dissociates' Question is about a weak acid Examiner's Comments Most candidates were aware that an acid is a proton donor but many candidates gave imprecise responses for the concept of a weak acid. Good candidates used the expected term 'partial dissociation', but weaker candidates often focused on a lower concentration of hydrogen ions, pH range or indicator colour.
			Total	1	
6	a		carbon dioxide lost/evolved/given off/or produced as a gas $\sqrt{ }$	1	DO NOT ALLOW water or steam or CO_{2} evaporates Examiner's Comments Candidates who failed to state that the gas being lost was CO_{2} could not access the mark for this question. Vague answers relating to water being produced, products being gases, products being lost or a gas evolved were often given by Candidates.

2.1.4 Acids

2.1.4 Acids

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \& \& understanding in an unfamiliar context rather than from a lack of knowledge

\hline \& ii

ii \& \begin{tabular}{l}
Attempted tangent on graph drawn to line at approximately $t=200 \mathrm{~s} \checkmark$

Gradient (y / x)
$$
\text { e.g. } \frac{0.20}{290}=6.9 \times 10^{-4}
$$

 \& 1 \&

ALLOW 1 SF up to calculator value, in range 5×10^{-4} to 8×10^{-4}

IGNORE units IGNORE sign

Examiner's Comments

This was the first time AS level candidates have been required to calculate a rate of reaction from a graph and many found this quite testing. Although many knew that a tangent was required only the most able candidates were able to arrive at a value for the gradient that was within the expected range. Candidates sometimes took as their values the point at which their tangent cut the axes rather than calculating the change in mass or change in time.

Acceptable range 5×10^{-4} to 8×10^{-4}
\end{tabular}

\hline c \& \& | Flask OR beaker |
| :--- |
| AND |
| balance |
| AND |
| stopwatch OR stop clock OR other timing device \checkmark |
| Records mass at time intervals \checkmark |
| Time interval quoted between 10-50s \checkmark | \& 1

1
1

1 \& | DO NOT ALLOW round-bottomed flask. |
| :--- |
| IGNORE weighing scales |
| ALLOW 'weigh at time intervals' |
| Examiner's Comments |
| This was the second question that required candidates to describe an experiment that they could have carried out as part of their course. Even if this experiment had not been completed in class, candidates should be able to recognise that mass needs to be measured over a period of time. As the reaction was between an acid and a carbonate a suitable named reaction vessel such as a beaker or flask was required. A balance was needed for mass measurement and a timing device to monitor time. A simple statement that mass should be recorded at a given time interval scored two marks with one mark being allocated to suitable apparatus. At this level it is expected that candidates will be familiar |

\hline
\end{tabular}

2.1.4 Acids

					with the correct names for the apparatus required to carry out an investigation.
			Total	11	
7	a	i	Mol of $\mathrm{H}_{2} \mathrm{SO}_{4}=0.100 \times 18.00 / 1000=1.80 \times 10^{-3}$ mol \checkmark	1	ALLOW calculator value or rounding to 2 significant figures or more but IGNORE 'trailing zeroes' throughout Q4. eg 0.200 is allowed as 0.2 Examiner's Comments This opening part to the calculation was relatively straightforward and almost all candidates scored this mark. Even when the mark was not awarded it was often not because of a lack of knowledge of the formula but because the student used the incorrect volume of $29.50 \mathrm{~cm}^{3}$.
		ii	Mol of NaOH in $=1.80 \times 10^{-3} \times 2 \times 1000 / 25.0=$ $0.144 \mathrm{~mol} \mathrm{dm}^{-3} \checkmark$	1	ALLOW ECF for (a)(i) $\times 2 \times 1000 / 25$ Examiner's Comments Candidates who had answered correctly part (i) were able to give the right answer here but some muddled the stoichiometric ratio. Another source of error was to use the wrong volume of NaOH , with some opting to use 200 cm^{3} as this was the total volume of solution X .
	b	i	Check the answer line. If answer $=\mathbf{0 . 0 1 8 4} \mathbf{~ m o l}$ award $\mathbf{2}$ marks Mol of NaHCO_{3} in $25.0 \mathrm{~cm}^{3}=[0.100 \times 11.50 / 1000]$ $\times 2=0.00230 \mathrm{~mol} \checkmark$ Mol of NaHCO_{3} in $200 \mathrm{~cm}^{3}=0.00230 \times 200 / 25.0=$ $0.0184 \mathrm{~mol} \checkmark$	2	If there is an alternative answer, check to see if there is any ECF credit possible using working below. ALLOW for an alternative method for M1 Total mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$ used $=[0.100 \times 29.50 /$ 1000] $=0.00295 \mathrm{~mol}$ Mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$ reacting with $\mathrm{NaHCO}_{3}=$ 0.00295 - answer to (a)(i) Expected answer $=.00295-0.00180=$ 0.00115 mol Mol of NaHCO_{3} in $25.0 \mathrm{~cm}^{3}=0.00115 \times 2=$ 0.00230 mol ALLOW ECF for mol of $\mathrm{NaHCO}_{3} \times 200 / 25.0$ For ECF in M2 titration values of 11.50 or 29.50 must have been used in M1 Second marking point is for scaling up number of mol of NaHCO_{3} by 200 / 25.0 (Usually seen as ' 8 ') Examiner's Comments

				This was probably the most challenging question on the paper and many candidates could not see the route to the answer. Encouragingly many did see the need to find the difference in the two titres and so their calculations did involve $11.50 \mathrm{~cm}^{3}$. The second mark for scaling up the amount was not often awarded.
	ii	Mass of $\mathrm{NaHCO}_{3}=0.0184 \times 84.0=1.55 \mathrm{~g} \mathrm{v}$ (must be three significant figures)	1	ALLOW ECF for (b)(i) $\times 84.0$ correctly calculated and rounded to three significant figures. Examiner's Comments In essence this was a very easy question that simply required candidates to multiply their answer to (i) by 84.0 and give the answer to 3 significant figures.
		Total	5	
8	a	Base: A substance which readily accepts H^{+}ions (from an acid) \checkmark Alkali: releases OH^{-}ions into (aqueous) solution \checkmark	2	ALLOW proton acceptor ALLOW Is soluble and releases OH^{-}ions (into aqueous solution) Examiner's Comments Of the two parts, the definition of base was more often given correctly. A few weaker candidates described a base in terms of the reaction with acids to give salts but most gave the correct answer. The description of an alkali was less well answered with some commenting on the presence of OH^{-}ions and others on the solubility but few doing both.
	b	Nitric acid $\mathbf{O R} \mathrm{HNO}_{3} \checkmark$ $\mathrm{CaCO}_{3}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \checkmark$	2	ALLOW reagent mark if no response is seen but HNO_{3} is seen in the equation IGNORE calcium carbonate on reagent line ALLOW multiples IGNORE state symbols DO NOT ALLOW $\mathrm{H}_{2} \mathrm{CO}_{3}$ for $\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ Examiner's Comments Most students identified the reagent as nitric acid but the equation proved more challenging. Most common errors were to give the formula as $\mathrm{H}_{2} \mathrm{NO}_{3}$ or calcium nitrate as CaNO_{3}.
		Total	4	

2.1.4 Acids

9	i	Hydrogen \checkmark	1	ALLOW H2 IGNORE 'H' Examiner's Comments This question was well answered although the erroneous appearance of water as a product of the reaction between an acid and a metal was seen relatively frequently.
	ii	$\mathrm{Ce}_{2}\left(\mathrm{SO}_{4}\right)_{3} \mathrm{~V}$ (Cerium) loses three electrons (to form $3+$ ion) \checkmark	2	ALLOW alternative phrases for 'loses' eg 'gives away', 'donates' IGNORE '3 electrons transferred' unless a correct direction is given eg ALLOW (Ce) transfers 3 electrons to ...OR (Ce) transfers 3 electrons forming Ce^{3+} IGNORE references to sulfate gaining electrons IGNORE references to reduction and oxidation Examiner's Comments This question was slightly more challenging and discriminated well. Some candidates missed the fact that the cerium was in the +3 oxidation state and gave the formula as CeSO_{4} along with an explanation that involved the loss of 2 electrons. However, a significant number of candidates did not focus upon the instruction in the question to explain 'in terms of the number of electrons transferred' and gave responses based solely upon changes in oxidation number.
	iii	A hydrogen ion (of an acid) has been replaced by a metal ion \checkmark	1	For hydrogen ion: ALLOW ' ${ }^{+}$' OR 'proton' but DO NOT ALLOW 'H' OR 'hydrogen' without 'ion' For metal ion: ALLOW 'cerium ion' OR ‘Ce ${ }^{3+\prime}$ OR ' $\mathrm{Ce}^{2+\prime} \mathbf{O R}$ 'Ce ion' But DO NOT ALLOW 'Ce' without 'ion' OR 'cerium' without 'ion' IGNORE 'ammonium ion' Examiner's Comments A good number of candidates had no problem with this question but slightly weaker students talked vaguely about the reaction of metals with acids and clearly did not realise that the question was really examining how well they understood the definition of a salt.
		Total	4	

2.1.4 Acids

$\left.\left.\begin{array}{|l|l|l|c|l|}\hline 10 & & & & \begin{array}{l}\text { ALLOW formula if seen as reactant in an } \\ \text { equation } \\ \text { IGNORE name }\end{array} \\ \text { Examiner's Comments }\end{array}\right] \begin{array}{l}\text { This question was well answered although it } \\ \text { was common to see incorrect formulae such } \\ \text { as HPO from weaker candidates. }\end{array}\right]$

